본문 바로가기

AI/CS231n

CS231n - Lec4. Backpropagation and Neural Network

반응형

How to compute

once we can express using a computational graph, we can use backpropagation

recursively use the chain rule in order to compute the gradient 

how does backpropagation work? 

 

ex) f(x,y,z) = (x+y)z  (x=-2, y=5, z=-4)

df/dz = 3  df/dy = df/dq * dq/dy = -4  df/dx = df/dq * dq/dx = -4 <= with CHAIN RULE

 

local gradient 

gradients 

sigmoid gate : d(Sigmoid)/dx = (1-Sigmoid) * Sigmoid

add gate : gradient distributor (인자들 모두 전에거 그대로 받음)

max gate : gradient router (하나는 그대로, 하나는 0을 받음)

mul gate : gradient switcher (서로 바꿔서 받음) 

df/dx = SUM(df/dqi * dqi/dx)

 

Neural Network

Linear score function : f = W * x

2-layer neural network : f = W1 * max( 0 , W1 * x )

activation function : ReLU, 1 hidden layer Neural Net == 2-layer Neural Net

W1 * x => hidden layer => W2 로 분류

근데 학생들이 어디서 말인지를 확인하냐? 는 질문을 하던데 무슨 소리인지.. 

 

다양한 activation function 사용 가능 

3layer neural net 의 예시, + sigmoid

 

반응형

'AI > CS231n' 카테고리의 다른 글

CS231n- Lec6. Training Neural Networks 1  (0) 2023.09.10
CS231n - Lec5. Convolutional Neural Networks  (0) 2023.09.08
CS231n - Lec3. Loss Functions and Optimization  (0) 2023.09.06
CS231n - Lec2. Image Classification  (0) 2023.09.05
CS231n - Lec1. Intro  (0) 2023.09.01